4 research outputs found

    Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans

    Get PDF
    Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach

    The role of the kidney and the sympathetic nervous system in hypertension.

    No full text
    Nearly one-third of the world's population has hypertension. The human and societal impact of hypertension is enormous. Primary hypertension accounts for 95 % of cases of hypertension in adults. The pathogenesis of primary hypertension is complex. The kidney and the sympathetic nervous system play important roles in the development and maintenance of hypertension. This review discusses their respective roles, the interaction between the two, implications of sympathetic overactivity in kidney disease and therapeutic interventions that have been developed on the basis of this knowledge, especially modulation of the sympathetic nervous system
    corecore